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Creating and Coordinating Multiple Planning Methods*
* Soowon Lee & Paul S. Rosenbloom

Information Sciences Institute and Computer Science Department
University of Southern California

4676 Admiralty Way
Marina del Rey, CA 90292, U.S.A.

* swleeaisi.edu
(To appear in Proceedings of the Second Pacific Rim International Conference on AI, 1992.)

Abstract An alternative approach is to construct a multi-
method planner which consists of a sequence of single-A planning system which has a fixed method will method planners, where each single-method planner

have trouble performing efficiently over a wide has a different set of constraints. One way to deter-
terange of problems. This paper provides an al- mine the sequence of planners is to start with the most
ternativc approach, called multi-method planning, restricted planner and to progress on to less restricted
which can potentially achieve planner complete- planners, as the current one fails, until a solution is
ness, planning time efficiency, and plan length re- found. The idea is that if the constraints used in re-
duction at the same time. A way to construct srce lnescnpuetesac pc n h

multi-method planners from a set of single-method stricted planners can prune the search space and the
planersis ntrducd, nd te cnstuctd pan- eliminated space contains inefficient plans, the prob-

* planners is introduced, and the constructed plan- lems solvable by more restricted planners should be
ners are compared with single-method planners.

Analytical and experimental results indicate the .ý3lved more quickly, generating efficient plans, while
potential of this approach. problems requiring less restricted planners should notwaste too much extra time trying out the insufficient

early planners. This approach is inspired by iterative
Introduction deepening (Korf, 1985). In iterative deepening, a se-

Research in domain-independent planning has been a quence of depth-first searches are performed, each to
main stream in the area of AI planning. In the design a greater depth than the previous one. If a solution
of domain-independent planning systems, it is impor- is found at a shallow depth, the cost of searching to
tant to consider the following criteria: (1) the ability a greater depth is saved. If a solution is not found at
to find a plan, or an optimal plan, for any problem in a particular depth, a deeper search is performed. The
an arbitrary domain; (2) the amount of time required cost of doing the shallower searches is then wasted, but
to find the plan; and (3) the execution cost of the plan since the deeper search costs at least B times the cost

* itself. The key issue here is how to construct a sin- of the shallower search - where B is the branching
gle planning method, or a coordinated set of different factor of the search tree - this cost can be relatively
p!anning methods, that has sufficient scope and effi- quite small. Thus, if the proportion of problems solv-
ciericy. able at shallow depths is large enough, and the ratio of

Most planning systems encode planning behaviors costs for successive levels is large enough, there should
within a fixed planning method such as linear plan- be a net gain.
ning, nonlinear planning, abstraction, and so on. Our
hypothesis is that no single method will satisfy the This paper describes an approach to building ef-
above three criteria for all situations. For example, ficient multi-method planners from a set of single-
STRIPS-type linear planners are based on the linear- method planners and evaluates the performance of
ity assumption to reduce the number of goal conjuncts them analytically and experimentally. We imple-
to consider for each planning step. However, the as- mented both the single-method planners and the multi-
sumption makes the planners unable to generate an method planners in the context of the Soar architec-

* optimal plan for certain problems in domains like the ture (Laird, Newell, & Rosenbloom, 1987). Soar is a
blocks world (Sussman, 1975) and fail to find a plan useful vehicle for this work because its impasse-driven
in domains with irreversible operators (Veloso, 1989). subgoaling scheme provides the necessary context for
On the other hand, nonlinear planners which are free planning and its multiple problem-space scheme pro-
from the linearity assumption may need more effort to vides a framework for multi-method planning. To sim-
find a plan, because they have more choices to consider plify the analysis, we focus on plans represented by
at each planning step.' STRIPS-like operators.

"This work was spcrsored by the Defense Advanced Re-
search Projects Agency (DOD) and the Office of Naval Re-
search linder contract number N00014-89-K-0155.

'The term "nonlinear" in this context implies that op- leaved. It does not necessarily mean that partially ordered
erators in service of different goal conjuncts can be inter- plans are used.



Single-method planners No subgoal Local Global

A planner can be characterized by 3 combination of a (Directness) (Linear) (Nonlinear)
set of biases over the space of plans considered and a set
of control strategies that determine which plans should M, M 2  M3
be considered before the others within the space. In
this section, we introduce six single-method planners GP
which are defined by different combinations of biases,
as implemented in Soar, and evaluate them experimen-
tally in terms of planner completeness, planning effi-
ciency, and plan lenrth. We do not focus on control M4 M_ M6
strategy here. A

No GP Nil
Planning biases -B • i- H

With the view of planning as search over a plan space,
which consists of all possible sequences of operators
that lead to the goal state, bias is defined as a con-
straint over the space of plans considered (Rosenbloom,
Lee, & Unruh, 1992). To be specific, bias is "any ba- Figure 1: The planning methods generated by the
sis for choosing one plan over another other than the bias dimensions (the bottom-left cell represents an ex-
goal test". Together with the planner's input - the tended blocks world problem where a block that is not
combination of an initial state and a goal - bias thus clear can be moved, dropping all the blocks above it
determines which portion of the entire plan space can onto the table).
or will be the output of planning. Thus, the combina-
tion of biases used in a planner characterizes the plans
that can be generated. junct, rather than an unmet precondition of another

The planning biases that we have concentrated on operator.
currently are protection, linearity - two common bi- The second point along the flexibility dimension al-
ases in planning - and directness. A protection bias lows generation of new subgoals, but only a single lo-
eliminates all plans in which an operator undoes an cal set of conjuncts are attended to at any point in
initial goal conjunct that is either true a priori or es- time. Initially the local set consists of the conjuncts
tablished by an earlier operator in the sequence. 2 A in the problem specification. However, whenever a se-
linearity bias removes from the plan space all plans in lected operator has one or more unmet preconditions,
which operators in service of different unachieved goal the previous local set is pushed on a stack, and the
conjuncts occur in succession; that is, once an oper- operator's unmet preconditions become the new local
ator for one unachieved goal conjunct is in the plan, set. When the operator's conditions are satisfied, the
operators for other conjuncts can be placed only after stack is popped to return to the previous set. Under
the sequence of operators for the first goal conjunct the assumption that an operator achieves only one goal
(Fikes, Hart, & Nilsson, 1971). A directness bias elim- conjunct, this implements linear planning by restrict-
inates all plans in which there is at least one operator ing the placement of an operator within the context of
that does not directly achieve a goal conjunct included the local conjuncts from which it arose, thus ensuring
in the problem definition, that operators for different goal conjuncts cannot be

These three biases have all been implemented as op- interleaved in the output plans.
tions within a hybrid planning system. The imple- The third point along the flexibility dimension allows
mented system consists of six single-method planners the global use of subgoals; that is, new goal conjuncts
defined by the cross-product of two bias dimensions - are generated for unmet preconditions, and operators
goal flexibility and goal protection. Figure 1 charac- are simultaneously considered for all unsatisfied con-
terizes the 3x2 set of planning methods derived from juncts. This is the least restricted version, and im-
these bias dimensions. The goal-flexibility dimension plements nonlinear planning by allowing operators for
is shown along the top row of the figure. It determines different goal conjuncts to be interleaved.
the degree of flexibility the planner has in generating The goal-protection (GP) dimension is shown along
new subgoals and in shifting the focus in the goal hi- the left side of Figure 1. The two points implemented
erarchy. This dimension subsumes the directness and along this dimension correspond to goal protection -
linearity biases. The most restricted point along this that is, every achieved top-level goal conjunct is pro-
dimension allows no generation of new subgoals for pre- tected until the problem is solved - and to no goal
condition violation. That is, if an operator has unmet protection. A goal protection bias shrinks the search
preconditions when the attempt is made to incorporate space by cutting off sequences of operators which vio-
it into a plan, that operator is rejected. This imple- late goal protection. 0
ments a directness bias by ensuring that each of the Each of the cells in Figure 1 shows a label repre-
operators in a plan directly achieves an initial goal con- senting the planner for that cell along with a prob-

lem that is just hard enough to require that planner.
2Other forms of protection can be found in (Sussman, The most restricted planner (MI) - a direct goal-

1975; Warren, 1974; Waldinger, 1975). protection planner - is in the top-left cell of the fig-
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ure. While quite restrictive, it is sufficient to solve the
block-stacking problem shown in that cell of the figure. Sae Active Proposed
The least restricted planner (M 6 ) - a nonlinear plan- ste goals operators
ner without goal protection - is in the bottom-right (m
cell of the figure. It is the only planner in the figure ma

* capable of generating an optimal solution to the blocks-
world problem shown in that cell. Between these two
extremes, moving up or to the left yields more bias,
while moving down or to the right yields less bias. Evalute

Directness failure

Implementation in Soar (a) Directness & protection (M,)

* The hybrid planning system containing the six single-
method planners has been implemented in the context _"alute

of the Soar architecture (Laird, Newell, & Rosenbloom, vaat Protection
1987). Problem solving in Soar is driven by applying (moveA W) L FA failure

operators to states within a problem space to achieve a
goal. Knowledge is stored in a permanent recognition (b) Linear & protection (Mz)
memory Fnd a temporary working memory. Recog-
nition memory consists of a set of variabilized rules, move B
where the conditions of each rule are matched against (moveC) *000 Success
working memory and the actions of a matched rule (moevAlu)a I A Se

are instantiated to propose preferences that change the -I

working memory. The most typical preferences are
feasibility (acceptable, reject) and desirability (best, (c)Nonlincar&protection(M)
better, indifferent, worse, worst) preferences. These
preferences are held in preference memory and used by Evaluael ...
a decision procedure to determine what changes are (move A t

made to working memory. A subgoal is created when
an impasse arises in the decision procedure. As the re-
sult of the subgoal, new preferences are generated and (d) Linear & no potecion (M)
new rules are learned (via a chunking process) whose
actions are based on the working-memory elements Figure 2. Planning in Soar.
that are the results of the subgoal, and whose condi-
tions are based on the working-memory elements that
led to the results (Rosenbloom & Newell, 1986). In ef-
fect, chunking is much like explanation-based learning d)). The difference between linear and nonlinear plan-
(Rosenbloom & Laird, 1986). ning, at least for these versions, is in the focus of op-

Figure 2 illustrates initial traces of particular ver- erator generation from the new goal hierarchy. Linear
sions of the single-method planners as implemented in planning shifts focus completely to the new conjunct
Soar for Sussman's anomaly in the blocks world. It - (Clear A) as in Figure 2(b) and (d) - stays with
starts with a combination of the initial state and the it until it is achieved, and then pops back to the origi-
entire conjunctive goal - (And (On B C) (On A B)). nal conjunct that led to the impasse. Processing shifts
By means-ends analysis, it generates the set of can- to one of its siblings (if there are any) only after the
didate operators - (move B C) and (move A B) - original conjunct is achieved. This eventually leads to
that are known to potentially be able to achieve any of failure if a protection bias is used (Figure 2(b)), or
the goal conjuncts. A tie impasse then occurs unless generates a non-optimal plan if a protection bias is not
there is information about how to pick among them.3  used (Figure 2(d)). Nonlinear planning instead shifts
In this tie impasse, a look-ahead search begins by se- to an expanded set of conjuncts that includes the new
lecting one of the alternatives to evaluate - here it set plus the original set minus the conjunct that led to
is (move A B). Its preconditions are tested and if it the impasse, yielding (On B C) and (Clear A) in this
is known to be applicable, it is executed. If it is not example (Figure 2(c)). At any point in time, an opera-
known to be applicable, what happens next depends tor can be selected for any of these conjuncts, enabling
on which biases are used in the method. operator sequences to be interleaved as necessary. For

If the directness bias is used, as in Figure 2(a), the all of the above planning methods (except Figure 2(a)),
evaluation of (move A B) is terminated immediatedly, once the new focus has been determined, planning con-
with failure as the evaluation value, and the other op- tinues recursively by using means-ends analysis to gen-
erator (move B C) is selected. If the directness bias erate candidate operators from the new goal hierarchy.

0 is not used, a new set of goal conjuncts are generated
from the operator's unmet preconditions (Figure 2(b- Experimental performance of the

3 For simplicity of presentation, these traces only show single-method planners
tie impasses. Refer to (Rosenbloom, Lee, & Unruh, 1990) Experimental results from the six planners are shown
for other types of impasses in planning. in Table 1. This data comes from running each plan-

0



ner on the same set of 100 problems. Because random No subgoal Local Global
choices are made among the goal conjuncts and among (Directness) (Linear) (Nonlinear)

the operators proposed for evaluation, three trials are M_ M2 M3
made for each problem and the results are averaged. GP

For each problem, an initial state was randomly gen- 68 (A1 ) 95 (A2 ) 96 (A 3 )

erated containing three or four blocks. Likewise a set M4 M5  M6
of goal conjuncts was randomly generated that num- No GP

bered between two and the number of blocks in the 68 (A4 ) 100 (AS) 100 (A 6 )
initial state. Learning was turned on for each prob-
lem, but only within-trial transfer was allowed; that
is, rules learned during one problem were not used (a) Number of problems solvable in principle.

for other problems. This learning essentially enables N
dependency-directed backtracking and transfer across No subgoal Local Globaladecsinsfo asinleprblm.(Directness) (Linear) (Nonlinear)
decisions for a single problem. _______ M 2  Ml3

Table l(a) shows the number of problems solvable Al(A 4 ) 16.3 18.7 19.5
in principle by each cell's planner, plus a label for GP A2  - 28,0 27.4

the problem set that this implicitly defines. Not sur- A3  - 27.8

prisingly, this shows a monotonic relationship between As(A 6 )
planner bias and scope, from a low of 68 problems for M 4  M5 M 6

the most restricted planner to a high of 100 problems No GP AI(A 4 ) 16.3 30.5 39.0
NGP A2  - 39.1 49.9for the least restricted planner. Tables 1(b) and l(c) A 3  40.3 51.3

show the average number of decisions and the average A 5 (A 6 ) 39.9 52.6

plan lengths - which should positively correlate, re-
spectively, with planning time and execution time - (b) Average number of decisions per problem solved.

for each of the four problem sets defined in Table 1(a). 4  
N

These four problem sets are associated with the four No subgoal Local Global

rows within each cell. The averages in each cell only (Directness) (Linear) (Nonlinear)

include the data from the trials that were solved within M1 M2 M3
AI1(A4) 1.82 1.84 1.89

an a priori limit of 300 decisions. Since 99% of the solv- GP A 2  - 2.41 2.37
able problems were actually solved within this limit, A 3  - 2.39
this includes nearly all of the trials. As(A6)

The timing results in Table l(b) show that planning Al 4  M5 M6
effort is also a monotonically decreasing function of the AI(A 4 ) 1.82 3.61 3.32

amount of bias along these dimensions (though there No GP A 2  - 4.41 4.14
A 3  4.57 4.17is one reversal when going from M 2 to M3 for problem A 5 (A6) 4.57 4.36

set A2 ). For example, for problem set A1, effort ranged
from a low of 16.3 decisions for the most biased method (c) Average plan length per problem solved.
to a high of 39.0 decisions for the least biased method.
This trade off between efficiency and completeness im- Table 1: Results from the six planners on three inde- •
plies that selecting an appropriate amount of bias for a pendent repetitions of a hundred randomly generated
given problem is critical for finding a solution quickly. blocks world problems.

Table 1 (c) exhibits a monotonic relationship between
plan length and the amount of bias used, but only for
directness and protection. It shows that the linearity for some of the problems (both in planning and exe-
bias does not help here in generating shorter plans. cution). An alternative approach is to build a multi- S
The most likely cause of the reversal for the linearity method planner which has a coordinated set of plan-
bias is that this bias is weak enough to allow solutions ning methods, where each individual planning method
to be found for all blocks world problems, but strong has a different set of constraints. A multi-method plan-
enough to eliminate optimal solutions for some of the ner can be coordinated in either a sequential or a time-
problems; for example, when the shortest plan requires shared manner. A sequential multi-method planner
operators in service of different goal conjuncts to be consists of a sequence of single-method planners, while
considered before the current goal conjunct is achieved, a time-shared multi-method planner consists of a set

of single-method planners, where each method is active
Multi-method planners in turn for a given time slice (Barley, 1991).'

One of the main problems with the planners examined In this paper, sequential multi-method planning is
in the previous section is that each is either incom- investigated and evaluated both analytically and em-
plete or performs a significant amount of excess work pirically. To simplify the analysis we focus on a spe-

cial type of sequential multi-method planners called
'In the standard blocks world domain, M, is the same

method as AM4. Although Ms is a different method from 5 Another type of coordination for a multi-method plan-
MG, and may not be able to generate an optimal plan for ner would be to run the methods in parallel, as in multi-
this domain, both Ms and Ms are complete planners for Agent planning; however, the focus here is on the control of
this blocks world domain, yielding As = As. a single serial agent only.

S• m m II l n



Performance analysis
For each monotonic multi-method planner Mk,
AfkM -- ... -. Mk,, there is a corresponding single-
method planner Mk, which has the same coverage of

MI 4 solvable problems. If Mk, - Mi., - ... - Mk, is com-

plete, lk,. is also complete. We compare a complete
M6  monotonic multi-method planner with its correspond-

ing single-method planner in terms of planning time
and plan length.

The probability that an arbitrary problem in A is
solvable by Mk,, which is equivalent to Ak,/A, is de-

Figure 3: A restricted dominance graph for the single- noted as Pk,. Let Mk,0 be a null planner which cannot
method planners. solve any problem; that means Ako = 5 and Pk0 = 0.

Let Bk, = Ak, - Ak,_,. for 1 < i < n, be the set of
problems which are solvable by Mk, but not by MAk..,.

a monotonic multi-method planner, where the single- and let Qk, = Pk, - Pk,-,, for 1 < i < n.
method planners are ordered according to increasing Planning time: The expected planning time SE
coverage and decreasing efficiency. That means, plan- of a complete monotonic multi-method planner Mk, -

ning starts with the most restricted planner, and then 'lk2 -.... Mk, can be represented as
successively relaxes the restrictions until a method is sE(Mk, - Mk. Mk., A)
found that is sufficient for the problem. We first n- M

present a scheme to construct monotonic multi-method Z[Qk, * (S(Mk, Bk.) + E f(Mk,, Bk,))], (1)
planners from a set of single-method planners, and
then provide a formal model to compare the perfor- T j=i* mance of constructed monotonic multi-method plan- The performance of the corresponding single-method
sunts for temfolowst atcthed eondtofic mlthsetion. tplanner Mk, is s(Mkt, A), which can be rewritten asners w ith single-m ethod planners. E xperim ental re-th su of h e a r ge p n i g t m e or h e d j i tsults for them follow at the end of the section. probem sets of . -h aeag p <nnn ti e < o thnds)in

problem sets Ak, - Ak,_,(1 < i < )

Constructing monotonic multi-method nBk,)] (2)

planners i=1Qk, * s(MkB .
i=1

* Let Mk, be a single-method planner, which can range To compare a monotonic multi-method planner with
over M1 to M6 defined in the previous section. A se- the corresponding single-method planner, we need to
quential multi-method planner which consists of n dif- subtract (1) from (2), yielding
ferent single-method planners is denoted as Mk, - s(Mk., A) - SE(Mk, -- Mk2  ..... Mk., A)=
Mk - .. -. Mk,. Let A be a sample set of problems, n i--
and let Ak, C A be the subset of problems which are 1-[Qk,*((s(Mk, Bk,)-s(Mk,, Bk,))-' f(Mk,, Bk.))].
solvable in principle by Mk,. The functions s(Mk,, A,)
and l(Mk,, A,) represent respectively the average cost Tis m=r
that Mk, requires to succeed and the average length of This means that if the performance gain by using a
plans generated by Mk,, for the problems in A, C Ak,. cheaper method (s(Mke Bk) - s(Mk,, Bk,)) is greater
Similarly, f(Mk,, A1 ) represents the average wasted than the wasted time by using inappropriate meth-os(F'i-1 f (Mt,, B•,)) in a monotonic multi-method
cost for Mk, to fail for the problems in Al 9 A - Ak,. ods ZB)tj=t

A restricted dominance relation M_ -< My is defined planner, then it is preferable to use that method
* between two different single-method planners, M, and over the single-method planner; otherwise, the single-

Ms, if the following conditions hold: method planner is preferred (at least where planning
time is concerned).

A, C Ay, Plan length: The estimated plan length 1E for a
complete monotonic multi-method planner is:

s(M., Ak.) <_ s(My, Ak,), for every Ak, C A, and IE(Mk, -- M, ..... Mk., A) =

I(M.,Ak,) < I(My,,Ak,), for every Ak, g A,. Z[Qk, *I(Mk,,Bk,)],

A sequential multi-method planner Mk, -- Mk - i=1

M.... Mk. is called monotonic if Mk, -< Mt,,, holds while the plan length for the corresponding single-
for each i = 1, ... , n - 1. Figure 3 exhibits a restricted method planner Mk. is
dominance graph for the single-method planners, Mi,
M 2 , M3 , M5 , and M6 , which are defined in the pre- I(Mk,,, A) = E [Qk, * I(Mk., Bk,)].

* vious section. Each node in the graph represents a i=1
single-method planner, and arc from Mý to M , im- If M, -. Mk, - ... -. Mk is monotonic, then
plies that M, -< M. holds. Thus every path in the l(Mk,, Bk,) < l(Mk,, Bk,). Therefore the lengths of
graph corresponds to a monotonic multi-method plan- plans generated from a monotonic multi-method plan-
ner. In this example, eight 2-method planners and four ner are less than or equal to the length of plans gener-
3-method planners can he constructed. ated from the corresponding single-method planner.



Average
number of Average 60
decisions plan length

Plannng type expected actual expected l actual 55+ 0Afl - NIS 39 28 35 31 3 35 3.270

M, -11r•,,1 46 19 42 16 334 332

-%12 - -It,5 3533 35 26 2.67 2.63 50

M2 -•V16 37471 3761 2 72 2812

M3 - M 5  33.42 33.47 2.48 2.44 ". 45
M 3 - M 6 35.50 34 .61 2.65 2.6 0
M] , _ Vf2 - M5 38.52 38.00 2,66 2.76 +•

Afl - M2 - M$6 40.90 3831 2.70 2.82 40( 0
m,• -- m•3 -- m5 35,99 34.09 2.43 2.42 ,

-%f -3 - NM6  3807 35,95 2.60 2.57
.,15 39.94 4 57 35 •,. *l+ 1
Mr 52.61 4.36

"Table 2- Expected and actual (experimental) perfor- 302 2.5 3 315 4 4.5 5
mance for the monotonic multi-method planners Plan length

Figure 4: Monotonic multi-method vs. single-method
Experimental Results planners ("o" represents single-method planners, "+"
Equation (1) makes it possible to predict the perfor- represents 2-method planners, and "*" represents 3-
mance of monotonic multi-method planners on some method planners.)
problem sets. Since Ms and M 6 are the two com-
plete single-method planners in this domain, ten coin- 0
plete monotonic multi-method planners can be created method planners (M1 - M6 is the exception) outper-
from the restricted dominance graph in Figure 3: six 2- form the two single-method planners in terms of both
method planners and four 3-method planners. Table 2 number of decisions and plan length for this set of hi-
shows the average expected number of decisions and ases and problems. Among the multi-method planners,
the average expected plan length for these ten plan- 3-method planners tend to generate marginally shorter
ners. plans than 2-method planners, with a slightly increased

In order to validate the predictions of the model, we number of decisions (except the case of M 1 - M 6 ).
have implemented these ten planners in Soar. Each
single-method planner in a monotonic multi-method Related Work
planner was implemented as a specialization of a gen- The basic approach of bias relaxation in multi-method
eral problem-space. Based on the sequence of single- planning is similar to the shift of bias for inductive con-
method planners, a set of meta-level control rules was planning is usimil t the sof bias f or idcvcoprovided to coordinate which problem-space is tried cept learning (Russell & Grosof, 1987; Utgoff, 1986).
nextidif the cuorrenate h problem-space ds no tgerted In the planning literature, this anproach is closely re-
next if the current problem-space does not generate lated to an ordering modificatiou which is a controla plan for the given problem. Three repetitions were strategy to prefer exploring some plans before oth-
made for each problem in the same 100 problem set strateg t pef ong some plans b oth-
used in Figure 1. Within-trial learning was turned on ers (Gratch & Deiong, 1990). Bhatnagar & Mostow
for each problem as in the experiments with the single- (1990) described a relaxation mechanism for over-
method planners, but learned rules were also allowed general censors in FAILSAFE-2. Hosever, there are ato transfer from an earlier method to a later method number of differences, such as the type of constraints

used, the granularity at which censors are relaxed, and(for the same problem). This is equivalent to the type the way censors are relaxed. SteppingStone (Ruby &
of transfer allowed in the single-method planners. Kibler, 1991) tries constrained search first, and moves

The experimental results for decision cycles and plan on to unconstrained search, if the constrained search
length are presented in Table 2. It shows that the reaches an impasse (within the boundary of ordered
experimental decisions are slightly less than the cor- reac s an iae (within the bndary of nor
responding expected decisions, while the experimental subgoals) v nd the knowledge stored in memory cannot
plan lengths are quite comparable to the expected plan resolve the impasse.
lengths. The difference between expected decisions and
experimental decisions is probably due to the across- Conclusions
method transfer of learned rules; that is, if two meth- In this paper, we investigated a sequential multi-
ods within a monotonic multi-method planner have the method planning approach that can improve the three
same bias and the control rules learned from the earlier planning criteria: planner completeness, planning effi-
method depend on only that bias, then those rules can ciency, and plan length. A formal analysis shows that
transfer to the later method. If this is the case, then (1) a monotonic multi-method planner takes less plan-
across method transfer is saving about 10%. ning time then the corresponding single-method plan-

Figure 4 compares the ten monotonic multi-method ner, if the performance gain by using a cheaper method
planners and the two single-method planners based on is greater than the wasted time by using inappropri-
the data in Table 2. It shows that nine out of ten multi- ate methods in the monotonic multi-method planner;
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and (2) the lengths of plans generated from a mono- Etzioni, 0. (1990). Why Prodigy/EBL works. Proceedings
tonic multi-method planner are less than or equal to of the Eighth National Conference on Artificial Intel.
the length of plans generated from the corresponding ligence (pp. 916-922). Boston, MA: AAAI Press.
single-method planner. The experimental results ob- Fikes, R. E., & Nilsson N. J. (1971). STRIPS: A new ap-
tained so far in the blocks world are consonant with proach to the application of theorem proving to prob-
this model (though there is a small confound due to lem solving. Artificial Intelligence, 2, 189-208.
tharnis g. mdGratch, J. M., & DeJong, G. F. (1990). A framework for
learning), evaluating search control strategies. Proceedings of

The findings in this paper do not necessarily mean the Workshop on Innovative Approaches to Planning,
that, for all situations. there exists a monotonic multi- Scheduling, and Control (pp. 337-347). San Diego,
method planner which outperforms the most efficient CA: Morgan Kaufmann.
single-method planner. In fact, the performance of Korf, R. E. (1985). Depth-first iterative-deepening: An
these planners depends on the biases used in the multi- optimal admissible tree search. Artificial Intelligence,
method planners and tht problem set used in the ex- 27, 97-109.

periments. For example, if the problems are so complex Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar:

that most of the problems are solvable only by the least An architecture for general intelligence. Artificial In-
telligence, 33, 1-64.

restricted method, the performance loss by trying inap- Minton, S., Carbonell, J. G., Knoblock, C. A., Kuokka, D.
propriate earlier methods in sequential multi-method R., Etzioni, 0., & Gill, Y. (1989). Explanation-based
planners would be critical. On the other hand, if the learning: A problem solving perspective. Artificial
problems are so trivial that it take: only a few deci- Intelligence, 40, 63-118.
sions for the least restricted method to solve the prob- Rosenbloom, P. S., & Laird, J. E. (1986). Mapping
lems, the slight performance gain by using more re- explanation-based generalization onto Soar. Proceed-
stricted methods in sequential multi-method planners ings of the Fifth National Conference on Artificial In-
might be overridden by the complexity of the meta- telligence (pp. 561-567). Philadelphia, PA: Morgan
level processing required to coordinate the sequence of Kaufmani

primitive planners. Rosenbloom, P. S., Lee, S., & Unruh, A. (1990). Respond-
ing to impasses in memory-driven behavior: A frame-

It thus remains an open question as to the range of work for planning. Proceedings of the Workshop on
situations in which multi-method planners will actu- Innovative Approaches to Planning, Scheduling, and
ally perform better. However, one way to in,ýrease the Control (pp. 181-191). San Diego, CA: MO.fogan Kauf-
chances of multi-method planner's performing better is mann.
to take advantage of the novel optimization opportuni- Rosenbloom, P. S., Lee, S., & Unruh, A. (1992). Bias in
ties that they provide. One possibility is to extend the planning and explanation-based learning. S. Chipman
scope of the biases to ones that limit the size of the goal & A. Meyrowitz (Eds.) Machine Learning: Induc-

hierarchy to reduce the search space, limit the length of tion, Analogy and Discovery. Hingham, MA: Kluwer

plans generated to shorten execution time, and result Academic Publishers. In Press. (Also available in S.

in learning more effective rules to increase transfer (Et- Minton (Ed.) Machine Learning Methods for Planning
and Scheduling. San Mateo, CA: Morgan Kaufmann.

zioni, 1990). Another possibility is to learn which plan- In Press.)
ning method to use for which class of problems. This Russell, S. J., & Grosof, B. N. (1987). A declarative ap-
can reduce the time wasted by multi-method planners. proach to bias in concept learning. Proceedings of the
Although our current implementation has the capa- Sixth National Conference on Artificial Intelligence
bility to learn rules that select appropriate methods, (pp. 505-510). Seattle, WA: Morgan Kaufmann.
the effect of method selection on the overall system Sussman, G. -'. (1975). A Computer Model of Skill Acqui-
performance has not yet been fully investigated. The sition. Cambridge, MA: MIT Press.
third possibility is to reduce the granularity at which Utgoff, P. E. (1986). Shift of bias for inductive concept

the individual planning methods are selected and used. learning. In R. S. Michalski, J. G. Carbonell, & T.
This means that a planning method can be switched M. Mitchell (Eds.) Machine Learning: An Artificial

Intelligence Approach, Vol. II. Los Altos, CA: Morgan
at a subgoal selection point or an ce. ..Ator selection Kaufmann.
point, if there is no path from that poitt to reach the Veloso, M. (1989). Nonlinear problem solving using intelli-
goal state. This approach can potentially improve the gent casual-commitment (Technical Report CMU-CS-
performance of multi-method planning if, for example, 89-210). School of Computer Science, Carnegie Mellon
there are a significant number of problems where most University.
of the subgoals are solvable by a very cheap method Waldinger, R. (1975). Achieving several goals simultane-
while the remainder of the problem requires a more ously(SRI Al Center Technical Note 107). SRI, Menlo

complex method. Park, CA.
Warren, D.lH.D. (1974). WARPLAN: a system for gener-

ating plans (Dept. of Computational Logic Memo 76)
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